
In-Register Parameter Caching for Dynamic Neural
Nets with Virtual Persistent Processor Specialization

Farzad Khorasani†
Tesla, Inc.

Palo Alto, CA, USA

fkhorasani@tesla.com

Hodjat Asghari Esfeden
Department of Computer Science
University of California Riverside

Riverside, CA, USA

hasgh001@ucr.edu

Nael Abu-Ghazaleh
Department of Computer Science
University of California Riverside

Riverside, CA, USA

naelag@ucr.edu

Vivek Sarkar
School of Computer Science

Georgia Institute of Technology
Atlanta, GA, USA

vsarkar@gatech.edu

Abstract—Dynamic neural networks enable higher represen-
tation flexibility compared to networks with a fixed architecture
and are extensively deployed in problems dealing with vary-
ing input-induced network structure, such as those in Natural
Language Processing. One of the optimizations used in training
networks is persistency of recurrent weights on the chip. In
dynamic nets, a possibly-inhomogeneous computation graph for
every input prevents caching recurrent weights in GPU registers.
Therefore, existing solutions suffer from excessive recurring
off-chip memory loads as well as compounded kernel launch
overheads and underutilization of GPU SMs.

In this paper, we present a software system that enables
persistency of weight matrices during the training of dynamic
neural networks on the GPU. Before the training begins, our ap-
proach named Virtual Persistent Processor Specialization (VPPS)
specializes a forward-backward propagation kernel that contains
in-register caching and operation routines. VPPS virtualizes
persistent kernel CTAs as CISC-like vector processors that can
be guided to execute supplied instructions. VPPS greatly reduces
the overall amount of off-chip loads by caching weight matrices
on the chip, while simultaneously, provides maximum portability
as it does not make any assumptions about the shape of the given
computation graphs hence fulfilling dynamic net requirements.
We implemented our solution on DyNet and abstracted away
its design complexities by providing simple function calls to
the user. Our experiments on a Volta micro-architecture shows
that, unlike the most competitive solutions, VPPS shows excellent
performance even in small batch sizes and delivers up to 6x
speedup on training dynamic nets.

Index Terms—GPU, Deep Learning, Neural Network, Dynamic
Neural Network, Persistent, Specialization, Register

I. INTRODUCTION

With the availability of very large data sets, recent years

have seen a revitalization of interest in the use of neural net-

works for various Machine Learning fields such as computer

vision [1], speech recognition [2], and Natural Language Pro-

cessing [3]. Training deep neural networks using large data sets

is a compute-intensive and time-consuming process. Typically

GPUs are used to accelerate the training by providing massive

compute parallelism. Training neural nets usually includes

many iterations of feeding inputs to the network and extracting

the gradients using backpropagation to make model parameters

†This work was done while the author was at Georgia Tech.

converge to the desired answer. The network architecture is

commonly represented as a computation graph in which nodes

stand for the operations and edges connecting the nodes show

the flow of the data (tensors).

An important class of neural networks is dynamic neural

nets; as opposed to more traditional static networks, the com-

putation graph in these problems may change for every given

input. For example, this change can be due to different input

sizes, such as in Long Short-Term Memory (LSTM) [4], or due

to variable network structures that different inputs create, such

as in tree-structured LSTM [5] networks. The dynamic nature

of the neural network provides Machine Learning researchers

with model specification freedom.

From a computational perspective, however, dynamic neural

networks complicate or even inhibit applying a body of

GPU optimizations that are often critical for improving the

performance of static networks. One such optimizations is on-

chip persistence of recurrent weights. In particular, Persistent

RNN [6] exploits caching weight matrices for a Recurrent

Neural Net (RNN) on-chip inside the GPU’s fast and large

register file to eliminate the recurring cost of off-chip loads

via persistent threads [7]. However, Persistent RNN assumes a

static structure of the computation, including pre-determined

placement of inputs as well as computation graph nodes.

If the way in which input tensors and parameters mix in

the network changes across inputs, Persistent RNN cannot

be applied. This is in contrast with the nature of dynamic

nets where every input may result in a computation graph

with a different shape. Moreover, even if the operation set is

predictable, Persistent RNN has to be specifically re-crafted

by an expert to be applicable for every RNN variation (for

example, as in GRU [8]). If a user specifies a custom RNN

architecture, this technique would not be readily applicable.

To enable in-register parameter caching (i.e., persistence)

for dynamic neural networks, we propose a software system

named Virtual Persistent Processor Virtualization (VPPS).

Prior to training, our solution Just-In-Time (JIT) compiles a

single forward-backward kernel specialized for caching the

given model parameters. For every forward-backward pass

over multiple possibly-dissimilar computation graphs, VPPS
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generates a script that guides the execution of Cooperative

Thread Arrays (CTAs) within the generated kernel. By al-

lowing the parameters of the given model to stay on chip

throughout forward and backward propagation for an input

batch, our design eliminates the cost of fetching recurring

weight matrices from the off-chip DRAM. When constructing

the single kernel that is launched for every forward-backward

pass, we utilize the information about model parameters to i)

distribute them across register file of SMs, and ii) specialize

matrix operations, such as weight matrix multiplication with a

vector. This JIT compilation of the kernel happens only once

before training loop, and is necessary due to literal indexing

of registers within the kernel binary.

Since the computation graph shape can potentially be dif-

ferent for every input, in the kernel every persistent CTA

is treated as a virtual CISC-like vector processor capable of

executing instructions according to its supplied script. VPPS

encodes the operations within batches of input graphs at

the host (CPU) side, packages them, and supplies them to

the kernel via a host-to-device memory copy. Each virtual

processor receives its exclusively assigned set of instruc-

tions, interprets them, and executes the operations using its

threads accordingly. This scheme not only provides maximum

portability as it makes no assumption about the structure of

computation graphs in the input batch, but it also eliminates

the overhead associated with launching numerous kernels by

enabling the execution of all the operations in the forward

and backward pass as well as updating the parameters with

collected gradients using only one CUDA kernel invocation.

Similar to on-the-fly operation batching [9], multiple dissim-

ilar computation graphs can be fed to the framework together

for training. This ability in fact provides virtual processors

with more task parallelism to exploit. We implemented our

design in DyNet [10] and automated all parts of it as a C++

library. An end-user can essentially benefit from our solution

using only two calls. The first call is outside the training

loop to pass the information about the model parameters,

and results in JIT compilation of the CUDA kernel using

the Nvidia Runtime Compiler (NVRTC) behind the scene.

The second call is within the training loop, and is performed

for every batch of computation graph. Our implementation

autonomously carries out script generation and transfer, as

well as the kernel launch. As opposed to the state-of-the-art

solution [9], our approach delivers excellent performance even

with small batches.

This work makes the following contributions.

• We propose Virtual Persistent Processor Virtualization

(VPPS), a software technique to enable in-register

caching of model’s recurring weight matrices in dynamic

neural nets and thereby greatly reduce the overall amount

of DRAM load requests.

• We discuss efficient implementation of VPPS mechanics,

including parameter distribution across GPU SMs, kernel

specialization, virtualizing persistent CTAs as CISC-like

vector processors, and script generation and execution.

We also present a set of optimizations to enhance the

concurrency.

• We automated VPPS as a C++ software library integrated

with DyNet that abstracts away inner details of our

proposal. In comparison with the state-of-the-art solution,

VPPS provides up to a 6× performance boost in training

throughput.

The rest of the paper is organized as follows. Section II

gives a background on dynamic neural nets and persistency of

recurrent model parameters and motivates our solution. Sec-

tion III elaborates VPPS. We present experimental evaluations

in Section IV. Section V discusses related work and Section VI

concludes the paper.

II. BACKGROUND AND MOTIVATION

Training neural nets is an iterative procedure that includes

visiting a training set multiple times. During each visit (epoch),

one element or a batch of elements in the training set is

fed to the network to produce their corresponding predic-

tions. These predictions are contrasted against their respective

correct answers using a loss function (negative softmax log
likelihood for instance). The loss, which indicates the quality

of the predictions, is backpropagated through the network to

collect the gradients. Updating model parameters with their

respective gradients enables the model to gradually enhance

the accuracy of its prediction. To systematically perform the

training, a specified neural network is usually transformed

into a directed acyclic computation graph, where nodes denote

operations and edges denote arrays of (typically) floating point

values representing the usage of the content generated by the

source node as the input for the destination node.

Dynamic neural networks. Dynamic nets are a class of

neural networks for which the architecture of the network,

and the resulting computation graph depend on the input, and

hence, may change from one training input to another. In

other words, while the parameters of the model, which are

its being-learned pieces, are reused for computation graphs

across different input instances, the set of operations tensors

have to go through depends upon the input as specified by

the user. Figure 1 shows an example of such network, from

Tree-Structured Long Short-Term Memory (LSTM) Sentiment

Analyzer [5], [10] application, for two inputs unrolled over

time. In this example, input word vectors are fed to the

LSTM [4] and output vectors produced by the LSTM instances

are mixed based on the parse tree of the sentences. Note that

depicted LSTMs in Figure 1 share the same parameter set.

Clearly, different input sentences have different parse trees,

and therefore, different network architectures; consequently,

they induce computation graphs with different shapes. The

emergence of such dynamic neural nets has given rise to the

popularity of frameworks such as Chainer [11], PyTorch [12]

and DyNet [10] that can construct the computation graph on-

the-fly for every input, which is in contrast with the approach

in frameworks such as TensorFlow [13] or Caffe [14] that

relies on static definition of the network architecture.
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(a) (b)

Fig. 1. Two example input sentences creating different network architectures
in the Tree-Structured LSTM Sentiment Analyzer application [5], [10], which
aims to classify the connotation of the sentence as positive or negative.

On-Chip Parameter Persistency. Within the computation

graph induced by one input or a batch of inputs, model

parameters in the form of weight matrices are usually used

a number of times for multiplying with the input vectors or

with the intermediate tensor vectors. In frameworks such as

DyNet and PyTorch, upon visiting every multiplication node

that uses these matrices, the weights have to be fetched from

GPU’s off-chip DRAM to carry out the operation. Repeated

off-chip loads of these weight matrices, however, account for

the majority of global memory loads during training, as shown

in Figure 2. The recurrent nature of such operation hints an

opportunity to cache the model parameters on the chip in

order to avoid excessive memory accesses and to boost the

performance; specially when neural net workloads are mostly

memory-bound [15].

Diamos et al. [6] suggested utilizing GPU register file

to cache recurrent weight matrices on chip when training a

model using vanilla RNNs. Not only registers have the highest

access bandwidth and lowest access latency compared to their

most competitive on-chip resource (shared memory), but also

register file is the largest memory on SM. Persistent RNN

follows persistent threads [7] programming style where enough

number of CTAs occupy all the SMs while task decomposition

is handled within a single kernel, which, in the case of

Persistent RNN, disallows register file content invalidation as

a side-effect of kernel relaunch. In Persistent RNN, a weight

matrix with a fixed size is fetched and distributed across

register file of GPU SMs 1. The kernel utilizes these cached

elements to perform the recurrent multiplication of the matrix

with given vectors. Persistent RNN can also be viewed as a

special form of kernel fusion cognizant of the model parameter

reuse.

The challenges of having both. As we mentioned, the reg-

ister file content is invalidated upon kernel termination. This

makes it necessary for the set of operations in-between weight

matrix visits to be executed within the same kernel. As a

result, Persistent RNN requires a pre-determined computation

procedure. In other words, the shape of the computation graph

1This observation in fact nicely fits in with the existing trend on the
collective size of GPU register file. While largest Pascal chip (GP100) had 56
SMs, the currently largest Volta chip (GV100) has 80 SMs, giving a total of
20 MB of on-chip storage capacity. The overall number of registers on GPUs
is expected to grow even more with Multi-Chip Module GPUs [16].

Fig. 2. Averaged distribution of off-chip DRAM loads measured for training
different dynamic neural net applications in DyNet [10]. Training settings and
benchmarks are the same as those discussed in Section IV.

has to be known ahead of time or repeat a specific pattern. This

is in contrast with the nature of dynamic nets where the set

of computation graph operations does not necessarily follow

a pattern and the graph’s shape may change across inputs.

Clearly, one cannot afford paying the cost of compiling a

special CUDA kernel for every encountered computation graph

at runtime due to the relatively long compilation time.

In addition, caching into an SM register file requires explicit

architected register index addressing within the kernel. Essen-

tially the compiler has to be able to realize what specific reg-

ister in the kernel binary to use for storing a specific element

of the weight matrix. Therefore, not only the declaration of

register arrays that are supposed to hold parameters has to have

a size known at kernel compile time, but also all the references

to the content of these arrays have to have literal indices. If any

of these two conditions are not met, CUDA compiler defines

the array as a thread-private local memory region that, instead

of living inside the physical registers, resides inside the off-

chip DRAM and may be cached in L1 and L2. This makes

every form of neural net with recurrent weights—assuming it

is describable as a repeating computation pattern—require an

expert developer to design the persistent kernel for.

State-of-the-art work. The focus of the research commu-

nity for optimizing GPU performance for dynamic nets so far

has revolved around enabling mini-batching. While in static

networks multiple inputs can be simply packed together to

create tensors with higher order and increase data parallelism,

this is not trivially achievable for dynamic nets. In a group

of existing frameworks such as PyTorch [12] where mini-

batching is manual, by default a dynamic neural net may

require online learning, and therefore, invoke one kernel per

operation node even if the input tensor size for the node is

small and the kernel is extremely short-lived. This results in

underutilization of available resources leaving a great number

of SMs unoccupied. Plus, the kernel preparation overhead for

the CPU and the kernel launch overhead for the GPU are

comparable to the kernel duration when it is short-lived. These

overheads add up to the overall training duration proportional

to the frequency of such nodes and degrade the performance.

To overcome this issue, TensorFlow Fold [17] and on-the-

fly operation batching [9] implemented in DyNet [10] have

enabled dynamic batching of similar operations in concurrent

and potentially-dissimilar computation graphs. Although these

mini-batching solutions reduce the multiple kernel launch

overhead and underutilization of SMs, there is no support
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Fig. 3. An overview of our solution: Virtual Persistent Processor Specializa-
tion (VPPS).

for persistency of recurring model parameters. The lack of

this feature leads to wasting a large portion of computation

time on the latency of excessive off-chip memory loads. Also,

these works require very large batch sizes to saturate the

GPU resources, which can lead to convergence instability [18],

poorer generalization [19], and lower accuracy.

Above discussion motivates the need for a solution that

enables in-register parameter persistency in dynamic training

environments. Since specification of computation graphs for a

batch of inputs happens at runtime and processing these graphs

will account for the training time, any such performance-

oriented solution must avoid overheads that can cancel out

or exceed provided benefits.

III. VIRTUAL PERSISTENT PROCESSOR SPECIALIZATION

In this Section, we present our solution Virtual Persistent
Processor Specialization (VPPS) that allows caching of model

parameters onto registers during training an input batch in

dynamic neural networks. Our solution has two parts that work

in tandem. The first part constructs the source for the forward-

backward propagation GPU kernel using model parameters

and JIT compiles it at run time. The second part generates

the script for the given input batch, transfers it to the device

DRAM and executes the kernel accordingly. While the first

part runs only once for a given model, the second part is

executed for every given input batch of possibly-dissimilar

computation graphs. Figure 3 presents an overview of our

method. In this section, we elaborate on the mechanics of

each part separately.

A. Forward-Backward Kernel Specialization

Before initiating the training loop, our framework needs

to construct the forward-backward GPU kernel. For a given

training batch, this kernel will solely be responsible for

carrying out forward propagation, backward propagation and

parameter update all in one invocation. Since parameters of

the model are going to be cached within the register file, it

is necessary for the kernel to be specialized and compiled

for the given parameters dynamically at run time in order

to enable static register indexing. Our design assembles a

string of characters containing the CUDA C++ source for the

kernel and its required functions, and supplies it to the Nvidia

Fig. 4. An example visualizing the round-robin assignment of two weight
matrices into register partitions in different CTAs. The example assumes there
are 4 CTAs in total, the width of CTAs is 128, and the partition size is 1024
(8 thread registers per partition).

Runtime Compiler (NVRTC) for generating kernel binary. As

it is shown in Figure 3, the kernel source is constructed from

two distinct pieces. One of these pieces is directly made by

our parameter routine call generator from the set of model

parameters while the other piece is independent of the model

specification.

1) Weight Matrix Distribution: For every weight matrix in

the list of model parameters, our solution has to first assign

matrix elements to registers belonging to threads in CTAs.

To avoid over-subscribing or under-subscribing CTAs with

different numbers of consumed registers, we virtually partition

the registers available to each CTA threads into multiple parti-

tions 2, and distribute pieces of model’s weight matrices over

these partitions in a round-robin fashion. Figure 4 visualizes

this using an example. This strategy goes on until all the

weight matrices are assigned. Using this method, not only

inter-CTA register cache utilization imbalance is minimized,

but also NVRTC creates the most similar looking matrix pieces

at every level which helps reducing overall kernel binary size

and instruction cache misses.

Similar to Persistent RNN [6], we require each row of a

weight matrix to be stored in the registers of and processed

by one specific warp. For example, in Figure 4 row 8 with

the length 128 in Matrix B is distributed across 128 regis-

ters of warp 0 in CTA 3. This allows a coalesced load of

weight matrices from GPU DRAM into the registers 3 and

to eliminate the need for synchronization with other warps

inside or outside of the CTA when performing matrix-vector

multiplication. We also distribute weight matrix pieces into

these partitions multiple rows at a time. In Figure 4, for

example, two consecutive rows of matrix B are given to each

warp. This helps reducing the number of remote atomic stores

when performing transposed-matrix-vector multiplication 4. In

addition, while the width of the CTA should be small to avoid

excessive internal usage of registers by threads themselves,

since a thread can address up to 255 4-bytes-long architected

registers in the most recent GPU micro-architectures, there

need to be at least 256 threads resident on the SM to allow

2This partitioning is the same across all the thread blocks.
3In DyNet weight matrices are stored in a row-major order by default.
4Our implementation performs the transposed-matrix-vector multiplication

without transposing the matrix view in registers.
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full utilization of its register file with the size of 256 KB. Thus

we select CTA width to be 256 5.

Since we are fusing the backward propagation and forward

propagation into one kernel, to avoid recurring accumulation

of weight matrix gradients into off-chip DRAM, we give

register partitions to gradient matrices as well. In the same

fashion as we did for matrix elements themselves, pieces

of gradient matrices are given to register partitions using

a round-robin scheduling depicted in Figure 4. Clearly, the

initialization and operation routines that will be generated for

a matrix and its gradient differ, which we discuss in detail

in Section III-A2. We will also discuss trade-offs involved

with caching gradients on chip and introduce an automated

decision-making optimization for it in Section III-C2.

There are two hyper-parameters for selecting a suitable

partition size. First is the number of CTAs per SM. Having

more CTAs results in more kernel occupancy and exposes

more parallelism by allowing more warps to be resident on

an SM. However, on the other hand, having more threads on

an SM means lower number of registers will be available for

caching the parameters. In our design, we allow for up to

two CTAs (each with width 256) per SM depending on the

aggregated size of weight matrices that need to be cached, and

automate the decision-making in the framework. Having more

than two thread-blocks per SM is impractical as it heavily

limits the size of partitions.

The second hyper-parameter is the partition size (CTA width
multiplied by thread registers per partition in Figure 4).

Because we enforce storing each row by one warp, if we

show the maximum length of a row in all the model’s weight

matrices with rowmax, partition size can be formulated as:

Psize = TBSize× rpw × � rowmax

warpSize
� (1)

where TBSize is the thread-block size and is fixed at 256,

warpSize is the warp size and is 32, and rpw is the mini-

mum number of rows a warp gets to process. We essentially

transform the decision on Psize to a decision on rpw. The

more rows assigned to a warp the more the reuse of the input

vectors on operations such as matrix-vector multiplication and

the more data locality when executing the transpose matrix-

vector multiplication; nonetheless, at the same time, the larger

the granularity of the assigned tasks to thread-blocks, which

increases the chance of inter-CTA load imbalance.

Profile-Guided Load Granularity Determination. The

advantage of above transformation is that rpw has a limited

number of valid integer options that are more than zero. For

instance, a model with rowmax = 1024 and one CTA per

SM can have a maximum rpw of six 6. In our framework,

we have enabled a profile-guided approach that compiles and

5One can argue that a CTA with width 256 can be replaced with two
CTAs with the width 128. However, this did not provide any benefits in our
applications due to the majority of tensors having the length more than 128.

6In our calculations for the kernel, we conservatively set aside 31 registers
per thread for interpretation routines and 32 additional registers for caching
vectors during matrix operations. This leaves us with 192 registers per thread
for caching weight matrices when there is only one CTA on the SM.

Fig. 5. A summarized view of the kernel source structure. Highlighted
sections are parts specialized at runtime based on the model’s weight matrices
and their distribution over registers of CTAs, while the rest is static. Arrows
on the left hand side indicate the call hierarchy.

stores multiple kernels each using one of the valid options

for rpw. During the training, it starts with the kernel with

rpw = 1 and measures the average computation time for

multiple training batches. Then incrementally uses the kernels

for bigger rpw’s and performs the measurements again. This

goes on until the framework observes performance degradation

or it arrives at the kernel with the largest rpw. For the rest of

the training, the framework uses the kernel that performed the

best during the profile stage. Note that the profiling takes only

a small portion of the training and its effect averages out across

many more training inputs and epochs. A similar approach

has been adopted by Tensor Comprehensions [20] where

an evolutionary search auto-tunes the training and gradually

converges to the best-performing compiled kernel.

2) Routine Call Generation: Using the partition size se-

lected in the previous step, the framework can embed the

register partition dimensions in the source code and generate

calls with appropriate template and function parameters to

the functions dealing with weight matrix operations. Figure 5

gives an overview of the structure of the source given to the JIT

compiler. For in-register matrix operations, we have created

device-side templated C++ functions that get included in the

source for JIT compilation (lines 2-4 in Figure 5). These op-

erations are matrix-vector multiplication for the forward pass,

transposed-matrix-vector multiplication, and outer product of

two vectors for extracting matrix gradients in the backward

pass. In these functions, arguments such as partition index, the

number of matrix rows per warp, and the number of iterations

of the warp over a row have to be passed as template arguments

in order to allow compile-time-known register array indexing.

In addition, there are matrix routines that are executed only

at the beginning or the end of the kernel (lines 17 and 21 in

Figure 5). These routines include parameter load from their
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master copy in DRAM into the registers, in-register gradient

matrix initialization to zero, and application of gradients onto

the master copy of parameters.

There are also other static kernel pieces used in the kernel

source without any changes across different model speci-

fications. These include the code for typical operations in

neural networks (lines 10-13 in Figure 5), such as forward

and backward device functions for activations, as well as

the routine for script interpretation (lines 18-20 in Figure 5).

Script interpretation routine is the inner part of the kernel that

loops over the script commands, interprets them, and executes

them with the specifications supplied in the script. We will go

into more details of the script interpretation and execution in

Section III-B2.

When all the pieces of the CUDA C++ kernel source are

constructed, our framework assembles them within a string and

passes them to the NVRTC for constructing the kernel binary.

It is worth noting that our approach resembles both code spe-

cialization and interpreter specialization [21] for dynamically

loaded code as follows.

B. GPU Script Generation and Execution

VPPS views each persistent CTA as a virtual vector proces-
sor. Each virtual processor needs a driving mechanism in order

to execute operations according to the type and placement

of nodes in the computation graph. This section discusses

the procedure to produce this driving mechanism, i.e., the

execution script, for one or a batch of computation graphs.

Such a script contains exclusive instructions for each virtual

processor and each processor is meant to utilize all its threads

to carry out a given vector instruction. The script essentially

guides persistent processors to read or write tensor contents

from and into the global memory, execute the operations, or

synchronize with each other if needed. This strategy is portable

as it does not make any assumptions about the shape of the

computation graph and therefore is well suited for dynamic

neural net models.

1) Operation Scheduling and Script Generation: To gen-

erate the script from a given batch of computation graphs,

our framework first sorts the nodes based on their maximum

depth calculated from the leaf nodes—nodes with no incoming

edges. This creates a correct total order of execution for

nodes where parallelism between nodes within a level can be

exploited due to their independence guaranteed through the

sort. Figures 6(a) and 6(b) illustrate this using an example.

This approach resembles depth-based batching [9], [17] for

dynamic nets, however, unlike these two works, our method

does not necessitate grouping similar operations together; all

the nodes in a level, regardless of their types, are scheduled

for a possibly concurrent execution. This creates a significant

advantage for our approach from a task parallelism perspective

even in small batch sizes.

After this sort, the framework traverses the computation

graphs level by level starting from the leaf nodes (level

zero). Upon visiting every node, depending on the operation

associated with the node the framework encodes a complex

(a) Depth-based sorting
the nodes.

(b) Extracting a correct total execution
order for nodes in different levels.

(c) Generating script’s instructions for virtual CISC-like vector processors.
The content within each square bracket pair is 4 bytes long.

(d) Distributing script instructions over Virtual Persistent Processors
(VPPs). The total number of VPPs is assumed to be 4. It is assumed
parameter v4 is cached across all VPPs while parameter v5 is cached
over VPPs 1 and 2. S and W are signal and wait instructions respectively.

Fig. 6. An example (inspired by computation graphs in [5]) visualizing step-
by-step operation scheduling and script generation in VPPS. This example
schedules forward-propagation; back-prop scheduling is performed similarly.

instruction—which will eventually be decoded and executed

by all the threads within the virtual CISC-like vector processor.

Figure 6(c) shows this procedure. Each instruction starts with

a 4-bytes-long preamble that encodes the type and input tensor

size for the operation. Depending on the operation, generated

instruction for a node may be up to 20-bytes-long, from which

most of the bytes are typically used to address the node’s

input or output tensor content inside the global memory. For

example, for a tanh() operation, the framework generates

12 bytes of instructions: 4 bytes for operation type and input

tensor length, 4 bytes for the output tensor address, and 4 bytes

for the input tensor address. Note that these addresses are, in

fact, offsets to the base address for a globally-shared memory

pool inside the DRAM 7 Using 4 bytes for tensor addresses

lets us save on instruction length. Allocated memory pool size

in our applications did not need to exceed 16 GB; naturally,

applications that consume more memory—assuming they are

trained with 32-bit floating point numbers—would necessitate

using more bits to store the offsets.

Since a virtual processors may produce a tensor that another

7This is a reasonable assumption since DyNet, similar to neural net training
frameworks such as TensorFlow [13] or Deep Speech 2 [22], uses a custom
memory allocator to store tensors. These allocators typically request for a
large portion of the GPU’s DRAM upfront in order to circumvent the recurring
overhead of CUDA runtime memory allocation and deallocation, which gives
them a continuous virtual memory region to work with.
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processor consumes, to enforce an order on the execution

and data visibility between virtual processors, we utilize two

special instructions named signal and wait. Each of these

instructions is 4-bytes-long and specified by S and W in Fig-

ure 6(d). After generating the instructions for the nodes within

a level l, each of the virtual processors that will participate in

executing instructions at l are given a signal instruction with

a particular barrier index. Before creating instructions for the

the nodes in level l+1, virtual processors that will be executing

instructions at l + 1 are also given a wait instruction over

that barrier. During the execution, these virtual processors will

have to wait on that barrier until the required number of signals

are arrived. This is to make sure that the dependencies for a

node are all satisfied and visible to the executing virtual pro-

cessors before initiating the operation. We essentially enforce

a consumer-producer relationship among virtual processors

involved in executing nodes in two consecutive levels. For

barriers, threads inside the thread-block use atomicAdd()
(alongside __threadfence() to ensure correctness [23])

on designated global memory locations.

After level by level traversal of the computation graphs in

the batch, which collectively form a Directed Acyclic Graph,

the framework traverses the levels in the reverse order to

create the back-propagation instructions. Within each level

during forward or backward traversal, in order to enable a

fair load distribution across virtual processors and maximize

parallelism, the framework keeps track of their accumulated

assigned loads, and for every instruction dynamically targets

the virtual processor with the minimum load. While we

empirically set the load metric for most of the operations

proportional to the aggregated length of tensors they read, we

associate a relatively higher load for operations related to the

cached matrices in order to better represent their computational

intensity with respect to other operations.

2) Script-Guided Kernel Execution: For the generated

scripts to be executed within the forward-backward kernel,

they need to be copied to the device side. To maximize the

copy throughput, we concatenate the scripts for all the virtual

processors in a preallocated pinned host memory region and

use a single copy command to initiate the transfer. Also, the

set of scripts in the copied buffer is preceded by the prefix sum

of the number of elements in each script in order to allow each

virtual processor quickly index into its own set of instructions.

Upon invoking the kernel, virtual processors execute the

script interpretation routine we had embedded in the kernel

source. Threads inside the virtual processor collaborate and

fetch the assigned script section into the SM’s on-chip shared

memory. Then, they start to loop over the script’s instructions:

sequentially decode each instruction and execute the associated

operation. Figure 7 shows a fragment of the loop content. The

decoder functions based on a switch() statement on the in-

struction type which routes the control flow to the appropriate

operation. In some cases, the length of the script for a virtual

processor might exceed its allocated shared memory size. This

is handled by fetching, decoding, and executing consecutive

pieces of its scripts in multiple rounds using another outer

Fig. 7. A fragment of the content of the virtual processor’s script interpretation
loop. Arrows on the sides indicate the execution flow for all the threads
of the virtual processor. This fragment resides within the forward-backward
propagation kernel and maps to line 20 in Figure 5.

loop within the kernel.

CISC vs. RISC. Different operations for our kernel, if

they are operating on tensors, have the DRAM memory

addresses for source operands and the destination operand

within them. If we were to virtualize CTAs as RISC processors

instead of CISC, we would have to explicitly control the

intermediate resources during the scheduling. For example, for

a component-wise add, we would need to specify the on-chip

memory and location the two input operands for the operation

have to be fetched into. We would also need to specify where

the result of the operation will be saved. Such a resource

management introduces runtime overheads for the host during
the training and negatively impacts the training throughput. On

the contrary, a CISC abstraction for CTAs offloads resource

management to NVCC and handles it at the kernel compile-

time. Plus, the overall number of neural network operation

types the kernel needs to support is limited, which does not

provide an incentive for paying RISC abstraction cost.

C. Additional Optimizations

This section introduces optimizations and design decisions

for additional performance enhancement.
1) Kernel Execution Asynchrony: Since assembling the ex-

ecution script for a batch of inputs is independent of the results

from the previous inputs, we allow it to happen concurrently

with the GPU executing the script from the previous batch.

In more details, while the GPU is executing the forward-

backward kernel, the CPU moves on to the next batch, creates

the graph from user-provided expressions and inputs, sorts the

nodes level-by-level, and traverses the graph in the forward

and backward directions to generate the script for virtual

processors. And then it synchronizes with the device in order

to be able to reuse the pinned host memory buffer for the host-

to-device script transfer. This approach essentially enhances

the training throughput by enabling concurrent execution of

both CPU and GPU.
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2) Gradient Accumulation Strategy: Caching gradients

alongside weight matrices doubles the amount of required

registers. If the GPU does not have sufficient registers, we

avoid allocating them for gradient matrices and the kernel does

not perform the outer-product operations—which constitute

the gradient matrices. Instead, in a pre-allocated location in

GPU’s DRAM memory pool, we concatenate all the left hand

side and all the right hand side tensors that participate in the

outer-product for each weight matrix, and use dense matrix-

matrix multiplication primitive in the CUBLAS library. This

gives us the gradients for a matrix efficiently in one go. For

each weight matrix, one such call must be made.

D. Design Automation

We implemented VPPS as a C++ library in DyNet [10]. This

allows the user to include its headers and access its features

with only a few modifications to an existing implementation

that is written for DyNet’s C++ front-end. The first function

call to use VPPS is made prior to the training loop after the

set of model parameters are defined by the user:

vpps::handle hndl( model );

This call JIT compiles the forward-backward kernel for our

solution behind-the-scene using the parameters in the DyNet’s

model object sent to it. The second call is within the training

loop after the computation graph is constructed (by DyNet’s

internal mechanism) for an input batch:

float staleLoss = hndl.fb( model, cg, lossExpr );

This tells the library to execute the forward-backward propa-

gation kernel for the given computation graph (cg). We need

to pass the model object again so that VPPS can query varying

design specifications such as weight decay. The last argument

of this call is a reference to the loss expression which will be

the final node for our forward propagation. This call replaces

dynet’s calls for forward propagation, backward propagation,

and parameter update.

As we mentioned in Section III-C1 we allow the GPU

kernel execution to be asynchronous with respect to the host.

Therefore, we designed VPPS such that what is returned by

the second call is the calculated loss for the previous round,

not the current one. To allow explicit synchronization with

the GPU after a forward-backward propagation request, we

provide a third function that waits for the GPU to finish the

currently running kernel and returns its loss:

float latestLoss = hndl.sync_get_latest_loss();

It is expected that the third call is used occasionally, for

example, when the user intends to ensure the training for an

epoch is completely over. These three calls essentially abstract

away the complexities of our design from the user.

Finally, our implementation uses the same method as in [9]

to enable concurrent training of multiple computation graphs

induced by multiple inputs. In this method, the loss nodes at

the end of computation graphs, regardless of graph shapes,

are accumulated using a summation operation in order to get

the aggregated loss. This creates a super-graph for which the

loss node is the aggregated loss. This aggregated loss can then

be back-propagated to collect the gradients for nodes in the

super-graph.

IV. EXPERIMENTAL EVALUATIONS

We performed our evaluations on a system with Nvidia

Titan V GPU (Volta architecture, CC 7.0, 80 SMs × 256 KB

of register file) with reference clock rates, connected to the

host, an Intel Xeon E5-1650 v2 running at 3.5 GHz, via

PCIe 3.0 16x. The O.S. is CentOS Linux Release 7.4.1708

with GCC 4.9.3 and CUDA 9.1 installed.

We first present the experimental results for Tree-structured
LSTM Sentiment Analyzer [5], [10] (Tree-LSTM for short)

and analyze it in detail, and then discuss the performance of

our method in other applications. Tree-LSTM is one of the

most irregularly-shaped benchmark applications for which the

structure of the neural network changes for every input based

on sentence’s parse tree. As its inputs, we used sentences and

their associated trees from Stanford Sentiment Treebank [24].

Results for other benchmarks are presented in Section IV-E.

A. Performance Improvement

We compare the performance of our method on Tree-

LSTM with the state-of-the-art solution: DyNet with on-the-

fly batching [9] that is implemented in two variants. One

variant groups the similar nodes in the constructed super-

graph based on their maximum depth from a leaf node and is

called depth-based batching (DyNet-DB). The other uses an

active list to group similar ready-to-be-executed nodes and is

named agenda-based batching (DyNet-AB). Figure 8 presents

Fig. 8. VPPS training throughput for Tree-LSTM across different batch sizes
compared with both variants of DyNet with on-the-fly batching [9] — depth-
based batching (DyNet-DB) and agenda-based batching (DyNet-AB) — as
well as TensorFlow Fold (TF-Fold). Hidden layer length and word embedding
length are both fixed at 256 for all the frameworks.

the training throughput provided by VPPS and compares it

with DyNet’s for different batch sizes in the range of 1 to

128. As the Figure shows, VPPS performs better than DyNet

specially in smaller batch sizes. VPPS’s excellent performance

with smaller mini-batches gives it a significant advantage since

Machine Learning researchers typically favor smaller mini-

batches due to better convergence properties [18], [19] and

higher model update rates. On the contrary, DyNet requires

very large batches to arrive at training rates close to VPPS’s.

This is because only large batches allow matrix-vector multi-

plications in DyNet to be converted into large matrix-matrix
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multiplications, which incurs fewer overall memory loads.

In addition, only large batches provide enough independent

operations of the same type to merge in order to remedy SM

underutilization. VPPS performance supremacy against the

best-performing DyNet variant ranges from 1.16x (on batch

size 128) to 2.92x (on batch size 2). When averaged across

all the batch sizes, VPPS performs 1.48x faster than DyNet.

Figure 12 also shows the training rates for TensorFlow Fold

reference implementation of Tree-LSTM which are generally

lower than both VPPS’s (1.93x on average) and DyNet’s

(1.29x on average).

B. Off-chip Memory Load Analysis

Batch Size 1 2 4 8 16 32 64 128

VPPS 352.62 176.31 88.15 44.07 22.03 11.01 5.50 2.75
DyNet-AB 2.82k 2.18k 1.79k 1.48k 1.25k 1.04k 868 692

TABLE I
SIZE OF WEIGHTS LOADED (IN MEGABYTES) FOR TRAINING 128 INPUTS

WITH DIFFERENT BATCH SIZES USING VPPS AND DYNET-AB.

To further analyze the performance of VPPS against DyNet

with on-the-fly batching, we measured the weight matrix

loads from GPU memory incurred during the training of 128

inputs in VPPS and DyNet-AB, as shown in Table I. These

results show that for all presented batch sizes, VPPS requires

far fewer off-chip memory accesses. Also, as the batch size

grows, we observe larger DRAM load reductions in DyNet-AB

compared to VPPS, due to transforming more matrix-vector

multiplications into matrix-matrix multiplications.

C. Analyzing the Sensitivity to the Size of Parameters

Figure 9 compares VPPS’s training throughput with

DyNet’s for different hidden layer lengths. First, as we in-

crease the hidden layer size, the throughput for both methods

decrease. This is mainly because of added computational

load to the training. Second, while VPPS’s average training

rate reduces by 8.5% when transitioning from hidden layer

length 128 to 256, the training rate drop is 12.2% when

using hidden layer length 384 instead of 256. This can be

explained by examining the kernel occupancies. With hidden

layer length 384, due to additional register pressure, VPPS

produces kernels with occupancy 12.5% (one CTA per SM)

instead of 25% (two CTAs per SM). We believe that this

reduced parallelism exploitation opportunity contributes to the

higher training rate decline. Third, with larger hidden layers

and therefore larger weight matrices, we do not observe the

slight performance decline with large batches anymore. This is

because the GPU has larger computation loads and disallows

CPU to act as the bottleneck for the training. Next section

discusses this in more details. Fourth, even with large hidden

layers where DyNet can create larger matrices, VPPS gives

higher training throughput.

D. Execution Time Breakdown

To analyze the performance of our solution in different

phases of execution during training, we measured the duration

of CPU and GPU activities for different batch sizes. We plotted

the results in Figure 10 where we normalized the durations

(a) Hidden layer length 128. (b) Hidden layer length 256.

(c) Hidden layer length 384. (d) Hidden layer length 512.

Fig. 9. VPPS training throughput on Tree-LSTM for different hidden layer
lengths across different batch sizes against both variants of DyNet with on-
the-fly batching [9]. Word embedding length is fixed at 128.

Fig. 10. Tree-LSTM Execution time breakdown in VPPS for different batch
sizes. Word embedding length and hidden layer length for the LSTM are both
256. Since in our solution device operations are asynchronous with respect to
the host, CPU and GPU execution durations are plotted side-by-side.

with respect to the batch size to retrieve per-input averages.

Since in the actual VPPS execution, CPU and GPU work

concurrently, we plotted CPU and GPU times side-by-side. It

is clear from Figure 10 that in small batch sizes, GPU kernel

execution on average takes longer than the preparations carried

out by the host. This makes the GPU kernel execution the

bottleneck for the performance. However, as the batch size

gets larger, per-input averaged kernel duration shortens due to

the exposure to more task parallelism. At the same time, we

observe that CPU execution time, specifically the contribution

of forward scheduling and backward scheduling, starts to

slightly increase, which is largely due to bigger working spaces

for data structures and higher cache misses. This makes the

CPU the performance bottleneck at higher batch sizes and

explains the small decline in VPPS’s performance in Figures 8,

9(a) and 9(b).
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E. Other Applications

In this section, we measure throughput boost provided by

VPPS in five other dynamic neural network models, each of

which exhibiting a different degree and form of architecture

dynamicity.

(a) BiLSTM (b) BiLSTMwChar (c) TD-RNN

(d) TD-LSTM (e) RvNN (f) Tree-LSTM

Fig. 11. A simplified view of the unrolled architectures created by dynamic
neural networks in our experiments. Note that these are only sampled views
and different inputs can induce different shapes.

BiLSTM. Bi-directional LSTM Named Entity Tagger [10]

based on [25] that uses a bi-directional LSTM to predict the

tag of every word in the input sentence.

BiLSTMwChar. Bi-directional LSTM Tagger w/ Optional
Character Features [10] similar to BiLSTM with a difference:

for words with a frequency less than 5 in the corpus, another

Bi-directional LSTM is run over the characters of the word to

create its embedding.

TD-RNN. A Time-Delay Neural Network [26] inspired by

the work of Peddinti et al. [27] where adjacent embeddings are

iteratively multiplied by recurrent left hand side and right hand

side weights and added together to create new embeddings.

Here we followed Socher et al. [24] proposition to reuse

a single composition function. The outcome for an input

sentence is passed through a multi-layer perception to predict

the connotation of the sentence.

TD-LSTM. Similar to TD-RNN where the transformations

with two Vanilla RNNs are replaced with LSTMs [8].

RvNN. A Recursive Neural Net [28] model similar to

TD-RNN where a sparser binary tree is constructed using

input sentence’s parse tree. Inspired by [29] we have untied

the weights for leaf nodes and internal nodes to separate

transformation spaces.

Figure 11 gives a view of the unrolled network architectures

these models create. While the shape of the computation

graph in BiLSTM, TD-RNN, and TD-LSTM can vary due

to different sentence lengths, in the rest of our applications

the parse tree of the sentence (RvNN, similar to TreeLSTM)

and the frequency of the words in the corpus (BiLSTMwChar)

determine the shape of the computation graph as well.

Figure 12 plots the training throughput for above applica-

tions when using VPPS and DyNet. Similar to Tree-LSTM, all

(a) BiLSTM

(b) BiLSTMwChar (c) TD-RNN

(d) TD-LSTM (e) RvNN

Fig. 12. VPPS training throughput against both variants of DyNet with on-
the-fly batching [9]. For RvNN and TD-RNN, hidden layer length and word
embedding length are both fixed at 512 while for the rest of applications they
are 256. MLP vector length for BiLSTM and BiLSTMwChar is 256. Character
embedding length for BiLSTMwChar is 64. As inputs for our models, we used
WikiNER English Corpus [30] for training BiLSTM and BiLSTMwChar, and
Stanford Sentiment Treebank [24] for training the rest.

the benchmarks demonstrate the effectiveness of our approach

compared to the state-of-the-art solution for the majority of

the batch sizes. Specially in smaller batch sizes where DyNet

fails to create large matrices and to utilize SM resources,

our approach shows superior performance by eliminating the

recurring cost of loading weight matrices. For BiLSTM at

batch size 2 the throughput boost provided by VPPS is 6.08x

compared to DyNet’s best performing variant. Also, in models

where the computation graph is comprised of limited types

of operation nodes, i.e., TD-RNN and RvNN, it is easier

for DyNet to batch the operations and arrive at VPPS’s

performance at smaller batches; while this is not the case for

other applications.

F. JIT Compilation Overhead

BiLSTM BiLSTMwChar TD-RNN TD-LSTM RvNN Tree-LSTM

Prog. Compilation 28.66 28.27 73.85 11.43 74.61 11.10

Module Load 14.65 20.02 46.69 7.40 47.78 7.29

TABLE II
JIT COMPILATION DURATION (IN SECONDS) FOR THE

FORWARD-BACKWARD PROPAGATION KERNEL IN VPPS.

Finally, Table II shows the JIT compilation duration for the

forward-backward kernel for the benchmarks (with settings

described in Sections IV-A and IV-E). Overall compilation
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time is the aggregation of program compilation (CUDA C++

to PTX) and module load (PTX to binary). This overhead

suggests that VPPS is more suited to be used at later stages

of neural network development where specification of model

parameters changes infrequently and the user can pay the JIT

compilation price only once for a training session that may

take hours or even days. Also, having a database for compiled

kernels in a non-volatile memory such as disk or SSD is

imaginable, although to the best of our knowledge serialization

of kernel binaries produced by NVRTC is currently not

supported; only intermediate PTX can be stored.

V. RELATED WORK

In addition to the articles discussed throughput this paper,

our method touches three distinct subjects.

a) Resource Virtualization: While VPPS virtualizes

CTA’s as persistent vector processors, other resource virtu-

alization strategies have been proposed. vDNN [31] virtu-

alizes available DRAM memory and utilizes host memory

behind-the-scene in order to seamlessly give the illusion of

a large global memory size for larger neural networks on

the GPU. Jeon et al. [32] virtualize register file to break the

curse of static physical register assignment in GPUs while

RegMutex [33] utilizes a multi-stage allocation approach to

address this issue. Zorua [34] virtualizes on-chip memories to

balance the resource allocation. The main difference between

these works and our work is that virtualization in VPPS

gives a layer of abstraction that enables execution control in

dynamic scenarios. Wireframe [35] virtualizes tasks by repre-

senting them as nodes in task graph and enforces a producer-

consumer relationships between these tasks at the hardware.

GPU Maestro [36] is another micro-architecture technique

to enable dynamic resource management and partitioning by

direct profiling in GPUs. Wu et al. [37] propose an SM-

centric abstraction to allow flexible GPU task assignment.

Adriaens et al. [38] propose spatial multi-tasking support on

GPUs to allow multiple applications to use GPU resources

simultaneously. SMK [39] and Warped-Slicer [40] take this

idea one step further and share the resources within one

SM between different applications. Finally, BiNoCHS [41]

virtualizes the GPU interconnect by decoupling SMs and on-

chip network routers to maximize communication throughput

based on the on-chip traffic pattern.

b) Fusion, Thread Persistency and In-Register Caching:
As mentioned, Persistent RNN [6] resembles kernel fu-

sion [42]–[44] where model parameters are explicitly cached.

VPPS extends this idea to dynamic scenarios and enables the

benefits of kernel fusion for dynamic nets. XLA [45] is an

extension for TensorFlow that recognizes and JIT compiles

groups of inter-connected operations in static neural networks

in order to carry them out with a single kernel. Tzeng et
al. [46] utilized Persistent Threads (PT) [7] to eliminate load

imbalance in irregular GPU workloads and Wald [47] used

PT for active thread compaction. Chen and Shen proposed

Free Launch [48] as a replacement for dynamic parallelism

on GPUs. Free Launch deploys PT to reuse parent threads for

nested tasks. VPPS, on the other hand, employs PT to maintain

active state of registers and inhibit their invalidation. These

use cases of PT have been broadly identified and discussed

by Gupta et al. [49]. The collective register file size growth

in recent GPU micro-architecture has led researchers to utilize

it for caching and data reuse purposes in various applications

such as binary field multiplication [50], similarity search [51],

and segmented sort [52]. CCC [53] exploits shared memory as

another software-controlled on-chip resource to cache tasks.

c) Hardware/Software Specialization: Although VPPS

runs on existing hardware and does not require micro-

architectural changes to the GPU, studying hardware spe-

cializations is insightful for an efficient design. TPU [15]

utilizes 28 MiB of on-chip memory, which indicates the

importance of data locality in Deep Learning applications.

Eyeriss [54], DaDianNao [55] and ShiDianNao [56] emphasize

on using on-chip storage to reduce DNN memory footprint.

TETRIS [57] and Boroumand et al. [58] suggest accelerat-

ing the neural network inference phase with 3D memory.

Chakradhar et al. [59], CATERPILLAR [60] and MAERI [61]

suggest DNN accelerators with configurable building blocks

that can be specialized for the given network architecture.

EIE [62], SCNN [63], and Cambricon-X [64] propose hard-

ware accelerators specialized for sparse and compress neural

nets. Cnvlutin [65] discusses eliminating ineffectual operations

in neural networks. Scalpel [66] specializes pruning of the

network with respect to the underlying hardware architecture

and DeftNN [67] offers synapse vector elimination and near-

compute data fission. Proteus [68], on the other hand, focuses

on numerical precision variability to augment DaDianNao.

Reagen et al. [69] and Park et al. [70] propose full computing

stacks to map the given Machine Learning model onto the

specialized accelerator. On the software side, taco [71] spe-

cializes the CUDA kernel for the given operations while the

main focus is efficient matching of sparse and dense tensors.

Finally, CudaDMA [72] and Singe [73] specialize warps in a

kernel for different tasks.

VI. CONCLUSION

This work presented Virtual Persistent Processor Special-

ization (VPPS) to allow recurring parameters of a dynamic

neural network to persist on-chip throughout training an input

batch. We demonstrated that our approach, unlike existing

counterparts, does not need a very large batch size for effi-

cient utilization of GPU resources. In addition, all described

steps in the paper are automated, meaning Machine Learning

researchers can naturally express their computation for a

dynamic net without having to know the internal mechanics of

the design. VPPS enables up to 6x training throughput boost

over the state-of-the-art method.
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